A change of variable formula for the 2D fractional Brownian motion of Hurst index bigger or equal to 1/4

نویسنده

  • Ivan Nourdin
چکیده

We prove a change of variable formula for the 2D fractional Brownian motion of index H bigger or equal to 1/4. For H strictly bigger than 1/4, our formula coincides with that obtained by using the rough paths theory. For H = 1/4 (the more interesting case), there is an additional term that is a classical Wiener integral against an independent standard Brownian motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Itô-type formula for the fractional Brownian motion in Brownian time*

Let X be a (two-sided) fractional Brownian motion of Hurst parameter H ∈ (0, 1) and let Y be a standard Brownian motion independent of X. Fractional Brownian motion in Brownian motion time (of index H), recently studied in [17], is by definition the process Z = X ◦ Y . It is a continuous, non-Gaussian process with stationary increments, which is selfsimilar of index H/2. The main result of the ...

متن کامل

Ito formula for the infinite dimensional fractional Brownian motion

We introduce the stochastic integration with respect to the infinite-dimensional fractional Brownian motion. Using the techniques of the anticipating stochastic calculus, we derive an Itô formula for Hurst parameter bigger than 1 2 .

متن کامل

m-order integrals and generalized Ito’s formula; the case of a fractional Brownian motion with any Hurst index

Given an integer m, a probability measure ν on [0, 1], a process X and a real function g, we define the m-order ν-integral having as integrator X and as integrand g(X). In the case of the fractional Brownian motion B , for any locally bounded function g, the corresponding integral vanishes for all odd indices m > 1 2H and any symmetric ν. One consequence is an Itô-Stratonovich type expansion fo...

متن کامل

The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6

Let B be a fractional Brownian motion with Hurst parameter H = 1/6. It is known that the symmetric Stratonovich-style Riemann sums for ∫ g(B(s)) dB(s) do not, in general, converge in probability. We show, however, that they do converge in law in the Skorohod space of càdlàg functions. Moreover, we show that the resulting stochastic integral satisfies a change of variable formula with a correcti...

متن کامل

A Note on the Clark-Ocone Theorem for Fractional Brownian Motions with Hurst Parameter bigger than a Half

Integration with respect to a fractional Brownian motion with Hurst parameter 1/2 < H < 1 is related to the inner product: (f, g)H = H(2H − 1) ∫

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008